Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803

نویسندگان

  • Jinlu Hu
  • Tianpei Li
  • Wen Xu
  • Jiao Zhan
  • Hui Chen
  • Chenliu He
  • Qiang Wang
چکیده

Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(-) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply*

The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynami...

متن کامل

Microevolution in Cyanobacteria: Re-sequencing a Motile Substrain of Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or 'PCC-M' strain, revealing considerable evidence for recen...

متن کامل

Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803

Cyanobacteria are an attractive host for biofuel production because they can produce valuable chemical compounds from CO2 fixed by photosynthesis. However, the available genetic tools that enable precise gene regulation for the applications of synthetic biology are insufficient. Previously, we engineered an RNA-based posttranscriptional regulator, termed riboregulator, for the control of target...

متن کامل

A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803.

Sugar catabolic genes are induced during nitrogen starvation in a cyanobacterium Synechocystis sp. PCC 6803, but the underlying regulatory mechanism still remains to be completely characterized. In this study, we showed by molecular genetics and transcriptome analyses that a response regulator Rre37 (encoded by sll1330), whose expression is enhanced by nitrogen depletion under the control of Nt...

متن کامل

Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis

The ribulose-1,5-bisphosphate (RuBP) oxygenation reaction catalyzed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is competing with carboxylation, being negative for both energy and carbon balances in photoautotrophic organisms. This makes RuBisCO one of the bottlenecks for oxygenic photosynthesis and carbon fixation. In this study, RuBisCO was overexpressed in the unicellular cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017